The Unnamed (lode near Fred Creek) is a gold mine located in Alaska.
About the MRDS Data:
All mine locations were obtained from the USGS Mineral Resources Data System. The locations and other information in this database have not been verified for accuracy. It should be assumed that all mines are on private property.
Mine Info
Satelite View
MRDS mine locations are often very general, and in some cases are incorrect. Some mine remains have been covered or removed by modern industrial activity or by development of things like housing. The satellite view offers a quick glimpse as to whether the MRDS location corresponds to visible mine remains.
Unnamed (lode near Fred Creek) MRDS details
Site Name
Primary: Unnamed (lode near Fred Creek)
Commodity
Primary: Gold
Secondary: Arsenic
Location
State: Alaska
District: Nome
Land Status
Not available
Holdings
Not available
Workings
Not available
Ownership
Not available
Production
Not available
Deposit
Record Type: Site
Operation Category: Prospect
Operation Type: Unknown
Years of Production:
Organization:
Significant:
Physiography
Not available
Mineral Deposit Model
Model Name: Low-sulfide Au-quartz vein
Orebody
Not available
Structure
Not available
Alterations
Alteration Type: L
Alteration Text: Oxidation; possible development of secondary layered silicates; sulfidation of contact zone.
Rocks
Not available
Analytical Data
Not available
Materials
Ore: Hematite
Ore: Gold
Comments
Comment (Exploration): Status = Probably inactive
Comment (Geology): Geologic Description = The basal contact zone of massive marble with schist is mineralized at this locality. The mineralized rock is hematized schist that is anomalous in gold and arsenic; arsenic is inferred to be present in a secondary mineral oxidized from arsenopyrite. This mineralization was found as a result of a soil geochemistry survey, but similar mineralization could exist widely at this stratigraphic and structural contact. The deposit could be the source of most of the gold in the Fred Creek placer (NM064). About 2,400 feet southwest of this prospect are numerous boulders of angular vein quartz float on muskeg soil. The quartz is about on trend with the Penny River fault (branch or main splay) that goes through the California prospect (NM062; C.C. Hawley, written communication, 1995). The metasedimentary schist and overlying massive marble unit (Bundtzen and others, 1994) are part of the Nome Group derived from Proterozoic to early Paleozoic protoliths (Till and Dumoulin, 1994). The Nome Group underwent regional blueschist facies metamorphism in the Late Jurassic or Early Cretaceous (Sainsbury, Coleman, and Kachadoorian, 1970; Forbes and others, 1984; Thurston, 1985; Armstrong and others, 1986; Hannula and McWilliams, 1995). The blueschist facies rocks were recrystallized to greenschist facies or higher metamorphic grades in conjunction with regional extension, crustal melting, and magmatism in the mid-Cretaceous (Hudson and Arth, 1983; Miller and Hudson, 1991; Miller and others, 1992; Dumitru and others, 1995; Hannula and others, 1995; Hudson, 1994; Amato and others, 1994; Amato and Wright, 1997, 1998). Lode gold mineralization on Seward Peninsula is mostly related to the higher temperature metamorphism in the mid-Cretaceous (Apodoca, 1994; Ford, 1993 [thesis]; Ford and Snee, 1996; Goldfarb and others, 1997).
Comment (Reference): Primary Reference = This report
Comment (Deposit): Model Name = Possible low sulfide, Au-quartz vein (Cox and Singer, 1986; model 36a).
Comment (Workings): Workings / Exploration = The area was explored by Kennecott Exploration Company in 1994. Kennecott extended an earlier soil geochemistry survey that was confined to the immediate area of the California mine (NM062). The extended survey found soils anomalous in gold and arsenic near the basal contact of massive marble in Fred Creek. Quartz boulders were found and mapped along the survey lines. Reconnaissance along the apparent northeast-trend of mineralization led to discovery of old hand placer workings in Boulder Creek, the next (northeast) tributary to Stewart (Ben Porterfield, oral communication, 1995). A trench cut by Kennecott in 1996 found a 200-foot-wide fault zone in the Fred Creek lode prospect area. The area has been further explored by Consolidated Aston.
Comment (Geology): Age = Mid-Cretaceous; structures controlling deposits post-date regional metamorphism - mineralization could be similar in age to other lode gold deposits of Seward Peninsula.
Comment (Deposit): Other Comments = Basal contact zone of massive marble is a favorable horizon in the Fred Creek area; also a major fault, probably related to the Penny River fault traverses the area.
References
Reference (Deposit): Amato, J.M., and Wright, J.E., 1997, Potassic mafic magmatism in the Kigluaik gneiss dome, northern Alaska -- A geochemical study of arc magmatism in an extensional tectonic setting: Journal of Geophysical Research, v. B102, no. 4, p. 8065-8084.
Reference (Deposit): Amato, J.M., and Wright, J.E., 1998, Geochronologic investigations of magmatism and metamorphism within the Kigluaik Mountains gneiss dome, Seward Peninsula, Alaska, in Clough, J.G., and Larson, Frank, eds., Short Notes on Alaskan Geology 1997: Alaska Division of Geological and Geophysical Surveys Professional Report 118a, p. 1-21.
Reference (Deposit): Till, A.B., and Dumoulin, J.A, 1994, Geology of Seward Peninsula and St. Lawrence Island, in Plafker, G., and Berg, H.C., eds., The Geology of Alaska: Geological Society of America, The Geology of North America, DNAG, v. G-1, p. 141-152.
Reference (Deposit): Dumitru, T.A., Miller, E.L., O'Sullivan, P.B., Amato, J.M., Hannula, K.A., Calvert, A.T., and Gans, P.B., 1995, Cretaceous to Recent extension in the Bering Strait region, Alaska: Tectonics, v. 14, p. 549-563.
Reference (Deposit): Apodoca, L. E., 1994, Genesis of lode gold deposits of the Rock Creek area, Nome mining district, Seward Peninsula, Alaska: Boulder, Colorado, University of Colorado, Ph.D. dissertation, 208 p.
Reference (Deposit): Hudson, T.L. 1994, Crustal melting events in Alaska, in Plafker, G., and Berg, H. C., eds., The Geology of Alaska: Boulder, Colorado, Geological Society of America, The Geology of North America, v. G-1, p. 657-670.
Reference (Deposit): Amato, J.M., Wright, J.E., Gans, P.B., and Miller, E.L., 1994, Magmatically induced metamorphism and deformation in the Kigluaik gneiss dome, Seward Peninsula, Alaska: Tectonics, v. 13, p. 515-527.
Reference (Deposit): Ford, R.C., and Snee, L.W., 1996, 40Ar/39Ar thermochronology of white mica from the Nome district, Alaska: The first ages of lode sources to placer gold deposits in the Seward Peninsula: Economic Geology, v. 91, p. 213-220.
Reference (Deposit): Hannula, K.A., and McWilliams, M.O., 1995, Reconsideration of the age of blueschist facies metamorphism on the Seward Peninusla, Alaska, based on phengite 40Ar/39Ar results: Journal of Metamorphic Geology, v. 13, p. 125-139.
Reference (Deposit): Bundtzen, T.K., Reger, R.D., Laird, G.M., Pinney, D.S., Clautice, K.H., Liss, S.A., and Cruse, G.R., 1994, Progress report on the geology and mineral resources of the Nome mining district: Alaska Division of Geological and Geophysical Surveys, Public Data-File 94-39, 21 p., 2 sheets, scale 1:63,360.
Reference (Deposit): Goldfarb, R.J., Miller, L.D., Leach, D.L., and Snee, L.W, 1997, Gold deposits in metamorphic rocks in Alaska, in Goldfarb, R.J., and Miller, L.D., eds., Mineral deposits of Alaska: Economic Geology Monograph 9, 482 p.
Reference (Deposit): Hannula, K.A., Miller, E.L., Dumitru, T.A., Lee, Jeffrey, and Rubin, C.M., 1995, Structural and metamorphic relations in the southwest Seward Peninsula, Alaska; Crustal extension and the unroofing of blueschists: Geological Society of America Bulletin, v. 107, p. 536-553.
Reference (Deposit): Sainsbury, C.L., Coleman, R.G., and Kachadoorian, Reuben, 1970, Blueschist and related greenschist faces rocks of the Seward Peninsula, Alaska, in Geological Survey research 1970: U.S. Geological Survey Professional Paper 700-B, p. B33-B42.
Reference (Deposit): Hudson, T.L., and Arth, J. G., 1983, Tin-granites of Seward Peninsula, Alaska: Geological Society of America Bulletin, v. 94, p. 768-790.
Reference (Deposit): Thurston, S.P., 1985, Structure, petrology, and metamorphic history of the Nome Group blueschist terrane, Salmon Lake area, Seward Peninsula, Alaska: Geological Society of America Bulletin, v. 96, p. 600-617.
Reference (Deposit): Miller, E.L., Calvert, A.T., and Little, T.A., 1992, Strain-collapsed metamorphic isograds in a sillimanite gneiss dome, Seward Peninsula, Alaska: Geology, v. 20, p. 487-490.
Reference (Deposit): Miller, E.L., and Hudson, T.L., 1991, Mid-Cretaceous extensional fragmentation of a Jurassic-Early Cretaceous compressional orogen, Alaska: Tectonics, v. 10, p. 781-796.
Reference (Deposit): Armstrong, R.L., Harakal, J.E., Forbes, R.B., Evans, B.W., and Thurston, S.P., 1986, Rb-Sr and K-Ar study of metamorphic rocks of the Seward Peninsula and southern Brooks Range, Alaska, in Evans, B.W., and Brown, E.H., eds., Blueschists and eclogites: Geological Society of America Memoir 164, p. 184-203.
Reference (Deposit): Ford, R.C., 1993, Geology, geochemistry, and age of gold lodes at Bluff and Mt. Distin, Seward Peninsula, Alaska: Golden, Colorado School of Mines, Ph.D. dissertation, 302 p.
Reference (Deposit): Forbes, R.B., Evans, B.W., and Thurston, S.P., 1984, Regional progressive high-pressure metamorphism, Seward Peninsula, Alaska: Journal of Metamorphic Geology, v. 2, p. 43-54.
The Top Ten Gold Producing States
These ten states contributed the most to the gold production that built the West from 1848 through the 1930s. The Top Ten Gold Producing States.