California

The California is a gold mine located in Alaska.

About the MRDS Data:

All mine locations were obtained from the USGS Mineral Resources Data System. The locations and other information in this database have not been verified for accuracy. It should be assumed that all mines are on private property.

Mine Info

Name: California

State:  Alaska

County:  na

Elevation:

Commodity: Gold

Lat, Long: 64.7698, -165.44910

Map: View on Google Maps

Satelite View

MRDS mine locations are often very general, and in some cases are incorrect. Some mine remains have been covered or removed by modern industrial activity or by development of things like housing. The satellite view offers a quick glimpse as to whether the MRDS location corresponds to visible mine remains.


Satelite image of the California

California MRDS details

Site Name

Primary: California
Secondary: Connolly and Jensen (or Jannsen)


Commodity

Primary: Gold
Secondary: Antimony
Secondary: Molybdenum
Secondary: Silver
Secondary: Tungsten


Location

State: Alaska
District: Nome


Land Status

Not available


Holdings

Not available


Workings

Not available


Ownership

Not available


Production

Not available


Deposit

Record Type: Site
Operation Category: Past Producer
Operation Type: Unknown
Years of Production:
Organization:
Significant:


Physiography

Not available


Mineral Deposit Model

Model Name: Low-sulfide Au-quartz vein


Orebody

Not available


Structure

Not available


Alterations

Alteration Text: Extensive iron-staining of the host schist reflects oxidized pyrite or arsenopyrite.


Rocks

Not available


Analytical Data

Not available


Materials

Ore: Arsenopyrite
Ore: Gold
Ore: Molybdenite
Ore: Scheelite
Ore: Stibnite
Gangue: Quartz


Comments

Comment (Reference): Primary Reference = Mertie, 1918

Comment (Geology): Age = Mid-Cretaceous; structures controlling deposits post-date regional metamorphism - mineralization could be similar in age to other lode gold deposits of Seward Peninsula.

Comment (Deposit): Other Comments = Complex target within major shear zone.

Comment (Workings): Workings / Exploration = The California lode was developed by a 70-foot decline that was reported to be in vein material to a depth of 33 feet. There are shallow pits, including a pit on the marble-schist contact about 250 feet east of the California incline. This pit has abundant bluish quartz. Another pit is about 1,200 feet southwest of the incline in a side canyon on the west side of Goldbottom Creek. The ore was processed by a jaw crusher and stamp mill that may not have crushed ore fine enough to liberate all the gold. Some development was reported in 1932; in 1938 about 100 feet of drift was driven and some ore was milled (Smith, 1934 [B 857-A], 1939 [B 917-A]). Kennecott Exploration Company explored the property with trenches and three diamond drill holes in 1995 and found mineralized rocks with low gold grades.

Comment (Deposit): Model Name = Low sulfide Au-quartz veins (Cox and Singer, 1986; model 36a).

Comment (Production): Production Notes = Small production in early 1900's, also some probably about 1937-38.

Comment (Geology): Geologic Description = The California vein was discovered and developed before 1908 (Smith, 1908; Chapin, 1914 [B 592-L, p. 397-407]; Mertie, 1918 [B 451-458]). It is localized in a subsidiary shear zone to a north- to northeast-striking regional fault. The lode is exposed in shallow cuts in a west-draining side canyon to upper Goldbottom Creek. It consists of contorted, sheared, and slickensided schist and quartz masses as much as 3 feet across in a zone that strikes about N 10 W and dips 80 to 85 degrees east. The quartz masses reportedly assayed as much as about 2.5 ounces of gold per ton, but only about 0.4 or 0.5 ounce of gold per ton were recovered by processing. Mr. Jensen, an owner at one time, retained specimens from the California lode of very rich gold ore (Pearse Walsh, oral communication, 1995). Small amounts of pyrite, arsenopyrite, and stibnite accompany the gold, and some molybdenun and tungsten values have been reported (Mertie, 1918 [B 662-I, p. 451-458]; Wedow and others, 1952, p. 35). Higher grade ore may be confined to lenticular ladder zones within the major shear zone. The California lode was developed by a 70-foot decline that was reported to be in vein material to a depth of 33 feet. The ore was processed by a jaw crusher and stamp mill that may not have crushed ore fine enough to liberate all the gold. Some development was reported in 1932; in 1938 about 100 feet of drift was driven, and some ore was milled (Smith, 1934 [B 857-A]; 1939). Kennecott Exploration Company explored the property with trenches and three diamond drill holes in 1995 and found mineralized rocks with low gold grades. The structure that localizes the California lode is subsidiary to a regional fault that strikes north- to north-northeast and can be traced southerly to at least Bangor Creek. The regional fault zone is hundreds of feet wide, and rock within the zone is highly contorted, graphitic mica schist (C.C. Hawley, written communication, 1995). The fault probably continues to the north-northeast into lower Fred Creek and the Stewart River valley, where it is covered by alluvium. South-southwest of the California lode, massive quartz boulders as much as several feet across occur as surface float along the fault as far as Goldbottom Creek. In addition, highly graphitic quartz veins, which resemble the main lode, occur in an east-draining side canyon to Goldbottom Creek about 1,200 feet southwest of the main California incline. At this point, the main, north- to north-northeast-trending shear zone is about 1,000 feet across. Gold-bearing veins, such as the California lode, are possibly ladder structures within the main shear zone. Hummel (1962 [MF 248]), Sainsbury, Hummel, and Hudson (1972), and Bundtzen and others (1994) mapped the major Penny River fault of north-east strike about one-half mile west of the California lode. On the basis of mapping by one of the compiler's (C.C. Hawley), the fault exposed at the California lode is a major

Comment (Geology): Geologic Description = branch of the Penny River fault ,or it is the main Penny River fault and the fault mapped by others is a subsidiary structure. About 250 feet east of the main California decline, non-contorted quartz-mica schist is overlain by the main marble unit of the Mount Distin area. This is the massive marble unit of Bundtzen and others (1994); it may have a Paleozoic protolith, but most of the metasedimentary rocks in this area are part of the Nome Group derived from Proterozoic to early Paleozoic protoliths (Till and Dumoulin, 1994). At this location, the marble is folded into an open, north-trending syncline at a high angle to the main, east-west Mount Distin syncline. The Nome Group underwent regional blueschist facies metamorphism in the Late Jurassic or Early Cretaceous (Sainsbury, Coleman and Kachadoorian, 1970; Forbes and others, 1984; Thurston, 1985; Armstrong and others, 1986; Hannula and McWilliams, 1995). The blueschist facies rocks were recrystallized to greenschist facies or higher metamorphic grades in conjunction with regional extension, crustal melting, and magmatism in the mid-Cretaceous (Hudson and Arth, 1983; Miller and Hudson, 1991; Miller and others, 1992; Dumitru and others, 1995; Hannula and others, 1995; Hudson, 1994; Amato and others, 1994; Amato and Wright, 1997, 1998). Lode gold mineralization on Seward Peninsula is mostly related to the higher temperature metamorphism in the mid-Cretaceous (Apodoca, 1994; Ford, 1993 [thesis]; Ford and Snee, 1996; Goldfarb and others, 1997).

Comment (Exploration): Status = Probably inactive


References

Reference (Deposit): Smith, P.S., 1934, Mineral industry of Alaska in 1932: U.S. Geological Survey Bulletin 857-A, p. 1-91.

Reference (Deposit): Hummel, C.L., 1962, Preliminary geologic map of the Nome D-1 quadrangle, Seward Peninsula, Alaska: U.S. Geological Survey Miscellaneous Field Studies Map MF-248, 1 sheet, scale 1:63,360.

Reference (Deposit): Smith, P.S., 1939, Mineral industry of Alaska in 1938: U.S. Geological Survey Bulletin 917-A, p. 1-113.

Reference (Deposit): Smith, P.S., 1908, Investigations of mineral deposits of Seward Peninsula: U.S. Geological Survey Bulletin 345, p. 206-250.

Reference (Deposit): Chapin, Theodore, 1914, Placer mining on Seward Peninsula: U.S. Geological Survey Bulletin 592-L, p. 385-395.

Reference (Deposit): Cathcart, S.H., 1922, Metalliferous lodes in southern Seward Peninsula: U.S. Geological Survey Bulletin 722, p. 163-261.

Reference (Deposit): Amato, J.M., and Wright, J.E., 1997, Potassic mafic magmatism in the Kigluaik gneiss dome, northern Alaska -- A geochemical study of arc magmatism in an extensional tectonic setting: Journal of Geophysical Research, v. B102, no. 4, p. 8065-8084.

Reference (Deposit): Amato, J.M., and Wright, J.E., 1998, Geochronologic investigations of magmatism and metamorphism within the Kigluaik Mountains gneiss dome, Seward Peninsula, Alaska, in Clough, J.G., and Larson, Frank, eds., Short Notes on Alaskan Geology 1997: Alaska Division of Geological and Geophysical Surveys Professional Report 118a, p. 1-21.

Reference (Deposit): Goldfarb, R.J., Miller, L.D., Leach, D.L., and Snee, L.W, 1997, Gold deposits in metamorphic rocks in Alaska, in Goldfarb, R.J., and Miller, L.D., eds., Mineral deposits of Alaska: Economic Geology Monograph 9, 482 p.

Reference (Deposit): Ford, R.C., and Snee, L.W., 1996, 40Ar/39Ar thermochronology of white mica from the Nome district, Alaska: The first ages of lode sources to placer gold deposits in the Seward Peninsula: Economic Geology, v. 91, p. 213-220.

Reference (Deposit): Hannula, K.A., Miller, E.L., Dumitru, T.A., Lee, Jeffrey, and Rubin, C.M., 1995, Structural and metamorphic relations in the southwest Seward Peninsula, Alaska; Crustal extension and the unroofing of blueschists: Geological Society of America Bulletin, v. 107, p. 536-553.

Reference (Deposit): Hannula, K.A., and McWilliams, M.O., 1995, Reconsideration of the age of blueschist facies metamorphism on the Seward Peninusla, Alaska, based on phengite 40Ar/39Ar results: Journal of Metamorphic Geology, v. 13, p. 125-139.

Reference (Deposit): Amato, J.M., Wright, J.E., Gans, P.B., and Miller, E.L., 1994, Magmatically induced metamorphism and deformation in the Kigluaik gneiss dome, Seward Peninsula, Alaska: Tectonics, v. 13, p. 515-527.

Reference (Deposit): Dumitru, T.A., Miller, E.L., O'Sullivan, P.B., Amato, J.M., Hannula, K.A., Calvert, A.T., and Gans, P.B., 1995, Cretaceous to Recent extension in the Bering Strait region, Alaska: Tectonics, v. 14, p. 549-563.

Reference (Deposit): Till, A.B., and Dumoulin, J.A, 1994, Geology of Seward Peninsula and St. Lawrence Island, in Plafker, G., and Berg, H.C., eds., The Geology of Alaska: Geological Society of America, The Geology of North America, DNAG, v. G-1, p. 141-152.

Reference (Deposit): Miller, E.L., Calvert, A.T., and Little, T.A., 1992, Strain-collapsed metamorphic isograds in a sillimanite gneiss dome, Seward Peninsula, Alaska: Geology, v. 20, p. 487-490.

Reference (Deposit): Ford, R.C., 1993, Geology, geochemistry, and age of gold lodes at Bluff and Mt. Distin, Seward Peninsula, Alaska: Golden, Colorado School of Mines, Ph.D. dissertation, 302 p.

Reference (Deposit): Apodoca, L. E., 1994, Genesis of lode gold deposits of the Rock Creek area, Nome mining district, Seward Peninsula, Alaska: Boulder, Colorado, University of Colorado, Ph.D. dissertation, 208 p.

Reference (Deposit): Hudson, T.L. 1994, Crustal melting events in Alaska, in Plafker, G., and Berg, H. C., eds., The Geology of Alaska: Boulder, Colorado, Geological Society of America, The Geology of North America, v. G-1, p. 657-670.

Reference (Deposit): Miller, E.L., and Hudson, T.L., 1991, Mid-Cretaceous extensional fragmentation of a Jurassic-Early Cretaceous compressional orogen, Alaska: Tectonics, v. 10, p. 781-796.

Reference (Deposit): Armstrong, R.L., Harakal, J.E., Forbes, R.B., Evans, B.W., and Thurston, S.P., 1986, Rb-Sr and K-Ar study of metamorphic rocks of the Seward Peninsula and southern Brooks Range, Alaska, in Evans, B.W., and Brown, E.H., eds., Blueschists and eclogites: Geological Society of America Memoir 164, p. 184-203.

Reference (Deposit): Thurston, S.P., 1985, Structure, petrology, and metamorphic history of the Nome Group blueschist terrane, Salmon Lake area, Seward Peninsula, Alaska: Geological Society of America Bulletin, v. 96, p. 600-617.

Reference (Deposit): Forbes, R.B., Evans, B.W., and Thurston, S.P., 1984, Regional progressive high-pressure metamorphism, Seward Peninsula, Alaska: Journal of Metamorphic Geology, v. 2, p. 43-54.

Reference (Deposit): Hudson, T.L., and Arth, J. G., 1983, Tin-granites of Seward Peninsula, Alaska: Geological Society of America Bulletin, v. 94, p. 768-790.

Reference (Deposit): Cobb, E.H., 1978, Summary of references to mineral occurrences (other than mineral fuels and construction materials) in the Nome quadrangle, Alaska: U.S. Geological Survey Open-File report 78-93, 213 p.

Reference (Deposit): Cobb, E.H., 1972, Metallic mineral resources map of the Nome quadrangle, Alaska: U.S. Geological Survey Miscellaneous Field Studies Map MF-463, 2 sheets, scale 1:250,000.

Reference (Deposit): Sainsbury, C.L., Hummel, C.L., and Hudson, Travis, 1972, Reconnaissance geologic map of the Nome quadrangle, Seward Peninsula, Alaska: U.S. Geological Survey Open-File Report 72-326, 28 p., 1 sheet, scale 1:250,000.

Reference (Deposit): Bundtzen, T.K., Reger, R.D., Laird, G.M., Pinney, D.S., Clautice, K.H., Liss, S.A., and Cruse, G.R., 1994, Progress report on the geology and mineral resources of the Nome mining district: Alaska Division of Geological and Geophysical Surveys, Public Data-File 94-39, 21 p., 2 sheets, scale 1:63,360.

Reference (Deposit): Chapin, Theodore, 1914, Lode development on Seward Peninsula: U.S. Geological Survey Bulletin 592-L, p. 397-407.

Reference (Deposit): Sainsbury, C.L., Coleman, R.G., and Kachadoorian, Reuben, 1970, Blueschist and related greenschist faces rocks of the Seward Peninsula, Alaska, in Geological Survey research 1970: U.S. Geological Survey Professional Paper 700-B, p. B33-B42.


The Top Ten Gold Producing States

The Top Ten Gold Producing States

These ten states contributed the most to the gold production that built the West from 1848 through the 1930s. The Top Ten Gold Producing States.